Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

The set Q consists of the following terms:

f(nil)
f(.(nil, x0))
f(.(.(x0, x1), x2))
g(nil)
g(.(x0, nil))
g(.(x0, .(x1, x2)))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(.(nil, y)) → F(y)
F(.(.(x, y), z)) → F(.(x, .(y, z)))
G(.(x, .(y, z))) → G(.(.(x, y), z))
G(.(x, nil)) → G(x)

The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

The set Q consists of the following terms:

f(nil)
f(.(nil, x0))
f(.(.(x0, x1), x2))
g(nil)
g(.(x0, nil))
g(.(x0, .(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

F(.(nil, y)) → F(y)
F(.(.(x, y), z)) → F(.(x, .(y, z)))
G(.(x, .(y, z))) → G(.(.(x, y), z))
G(.(x, nil)) → G(x)

The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

The set Q consists of the following terms:

f(nil)
f(.(nil, x0))
f(.(.(x0, x1), x2))
g(nil)
g(.(x0, nil))
g(.(x0, .(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(.(nil, y)) → F(y)
F(.(.(x, y), z)) → F(.(x, .(y, z)))
G(.(x, .(y, z))) → G(.(.(x, y), z))
G(.(x, nil)) → G(x)

The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

The set Q consists of the following terms:

f(nil)
f(.(nil, x0))
f(.(.(x0, x1), x2))
g(nil)
g(.(x0, nil))
g(.(x0, .(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

G(.(x, .(y, z))) → G(.(.(x, y), z))
G(.(x, nil)) → G(x)

The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

The set Q consists of the following terms:

f(nil)
f(.(nil, x0))
f(.(.(x0, x1), x2))
g(nil)
g(.(x0, nil))
g(.(x0, .(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

F(.(nil, y)) → F(y)
F(.(.(x, y), z)) → F(.(x, .(y, z)))

The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

The set Q consists of the following terms:

f(nil)
f(.(nil, x0))
f(.(.(x0, x1), x2))
g(nil)
g(.(x0, nil))
g(.(x0, .(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.